SECDND/EDITION
' 4

L i| ; J

——

MACHINE
LEARNING

WITH SPARK AND PY THON

ESSENTIAL TECHNIQUES
FOR PREDICTIVE ANALYTICS

MICHAEL BOWLES

Machine Learning with
Spark™ and Python®

Machine Learning with

™ ®

Essential Techniques for
Predictive Analytics

Second Edition

Michael Bowles

WILEY

Machine Learning with Spark™ and Python®: Essential Techniques for Predictive Analytics, Second Edition

Published by

John Wiley & Sons, Inc.
10475 Crosspoint Boulevard
Indianapolis, IN 46256
www.wiley.com

Copyright © 2020 by John Wiley & Sons, Inc., Indianapolis, Indiana
Published simultaneously in Canada

ISBN: 978-1-119-56193-4
ISBN: 978-1-119-56201-6 (ebk)
ISBN: 978-1-119-56195-8 (ebk)

Manufactured in the United States of America

No part of this publication may be reproduced, stored in a retrieval system or transmitted in any form or
by any means, electronic, mechanical, photocopying, recording, scanning or otherwise, except as permitted
under Sections 107 or 108 of the 1976 United States Copyright Act, without either the prior written permission
of the Publisher, or authorization through payment of the appropriate per-copy fee to the Copyright Clear-
ance Center, 222 Rosewood Drive, Danvers, MA 01923, (978) 750-8400, fax (978) 646-8600. Requests to the
Publisher for permission should be addressed to the Permissions Department, John Wiley & Sons, Inc., 111
River Street, Hoboken, NJ 07030, (201) 748-6011, fax (201) 748-6008, or online at http://www.wiley.com/
go/permissions.

Limit of Liability/Disclaimer of Warranty: The publisher and the author make no representations or war-
ranties with respect to the accuracy or completeness of the contents of this work and specifically disclaim all
warranties, including without limitation warranties of fitness for a particular purpose. No warranty may be
created or extended by sales or promotional materials. The advice and strategies contained herein may not
be suitable for every situation. This work is sold with the understanding that the publisher is not engaged in
rendering legal, accounting, or other professional services. If professional assistance is required, the services
of a competent professional person should be sought. Neither the publisher nor the author shall be liable for
damages arising herefrom. The fact that an organization or Web site is referred to in this work as a citation
and/or a potential source of further information does not mean that the author or the publisher endorses
the information the organization or website may provide or recommendations it may make. Further, readers
should be aware that Internet websites listed in this work may have changed or disappeared between when
this work was written and when it is read.

For general information on our other products and services please contact our Customer Care Department
within the United States at (877) 762-2974, outside the United States at (317) 572-3993 or fax (317) 572-4002.

Wiley publishes in a variety of print and electronic formats and by print-on-demand. Some material included
with standard print versions of this book may not be included in e-books or in print-on-demand. If this book
refers to media such as a CD or DVD that is not included in the version you purchased, you may down-
load this material at http://booksupport .wiley.com. For more information about Wiley products, visit
www.wiley.com.

Library of Congress Control Number: 2019940771

Trademarks: Wiley and the Wiley logo are trademarks or registered trademarks of John Wiley & Sons, Inc.
and/or its affiliates, in the United States and other countries, and may not be used without written permis-
sion. Spark is a trademark of the Apache Software Foundation, Inc. Python is a registered trademark of the
Python Software Foundation. All other trademarks are the property of their respective owners. John Wiley &
Sons, Inc. is not associated with any product or vendor mentioned in this book.

I dedicate this book to my expanding family of children and grandchildren, Scott,
Seth, Cayley, Rees, and Lia. Being included in their lives is a constant source of joy for
me. | hope it makes them smile to see their names in print. | also dedicate it to my
close friend Dave, whose friendship remains steadfast in spite of my best efforts.

I hope this makes him smile too.

Mike Bowles, Silicon Valley 2019

About the Author

Dr. Michael Bowles (Mike) holds bachelor’s and master’s degrees in mechanical
engineering, an ScD in instrumentation, and an MBA. He has worked in aca-
demia, technology, and business. Mike currently works with companies where
artificial intelligence or machine learning are integral to success. He serves var-
iously as part of the management team, a consultant, or advisor. He also teaches
machine learning courses at UC Berkeley and Hacker Dojo, a co-working space
and startup incubator in Mountain View, CA.

Mike was born in Oklahoma and took his bachelor’s and master’s degrees
there, then after a stint in Southeast Asia went to Cambridge for ScD and C.
Stark Draper Chair at MIT after graduation. Mike left Boston to work on com-
munications satellites at Hughes Aircraft Company in Southern California, and
then after completing an MBA at UCLA moved to the San Francisco Bay Area
to take roles as founder and CEO of two successful venture-backed startups.

Mike remains actively involved in technical and startup-related work. Recent
projects include the use of machine learning in industrial inspection and auto-
mation, financial prediction, predicting biological outcomes on the basis of
molecular graph structures, and financial risk estimation. He has participated
in due diligence work on companies in the artificial intelligence and machine
learning arenas. Mike can be reached through mbowles.com.

vii

About the Technical Editor

James York-Winegar is an Infrastructure Principal with Accenture Enkitec
Group. James helps companies of all sizes from startups to enterprises with their
data lifecycle by helping them bridge the gap between systems management
and data science. He started his career in physics, where he did large-scale
quantum chemistry simulations on supercomputers, and went into technology.
He holds a master’s in Data Science from Berkeley:.

Acknowledgments

I'd like to acknowledge the splendid support that people at Wiley have offered
during the course of writing this book and making the revisions for this second
edition. It began with Robert Elliot, the acquisitions editor who first contacted me
about writing a book—very easy to work with. Tom Dinse has done a splendid
job editing this second edition. He’s been responsive, thorough, flexible, and
completely professional, as I've come to expect from Wiley. I thank you.

I'd also like to acknowledge the enormous comfort that comes from having
such a quick, capable computer scientist as James Winegar doing the technical
editing on the book. James has brought a more consistent style and has made
a number of improvements that will make the code that comes along with the
book easier to use and understand. Thank you for that.

The example problems used in the book come from the University of California
at Irvine’s data repository. UCI does the machine learning community a great
service by gathering these data sets, curating them, and making them freely
available. The reference for this material is:

Bache, K. & Lichman, M. (2013). UCI Machine Learning Repository (http://
archive.ics.uci.edu/ml). Irvine, CA: University of California, School of
Information and Computer Science.

Xi

Introduction
Chapter 1
Chapter 2
Chapter 3

Chapter 4
Chapter 5
Chapter 6
Chapter 7

Index

Contents at a Glance

The Two Essential Algorithms for Making Predictions
Understand the Problem by Understanding the Data

Predictive Model Building: Balancing Performance,
Complexity, and Big Data

Penalized Linear Regression

Building Predictive Models Using Penalized Linear Methods
Ensemble Methods

Building Ensemble Models with Python

XXi

23

77
129
169
221
265
329

xiii

Introduction

Chapter 1

Chapter 2

Contents

The Two Essential Algorithms for Making Predictions

Why Are These Two Algorithms So Useful?

What Are Penalized Regression Methods?

What Are Ensemble Methods?

How to Decide Which Algorithm to Use

The Process Steps for Building a Predictive Model
Framing a Machine Learning Problem
Feature Extraction and Feature Engineering
Determining Performance of a Trained Model

Chapter Contents and Dependencies

Summary

Understand the Problem by Understanding the Data
The Anatomy of a New Problem
Different Types of Attributes and Labels Drive
Modeling Choices
Things to Notice about Your New Data Set
Classification Problems: Detecting Unexploded
Mines Using Sonar
Physical Characteristics of the Rocks Versus Mines Data Set
Statistical Summaries of the Rocks Versus Mines Data Set
Visualization of Outliers Using a Quantile-Quantile Plot
Statistical Characterization of Categorical Attributes
How to Use Python Pandas to Summarize the Rocks
Versus Mines Data Set
Visualizing Properties of the Rocks Versus Mines Data Set
Visualizing with Parallel Coordinates Plots
Visualizing Interrelationships between Attributes and Labels

XXi

— O NN -

26
27

28
29
32
34
35

36
39
39
41

XV

xvi

Contents

Chapter 3

Chapter 4

Visualizing Attribute and Label Correlations Using a Heat Map
Summarizing the Process for Understanding the Rocks Versus
Mines Data Set
Real-Valued Predictions with Factor Variables: How Old Is
Your Abalone?
Parallel Coordinates for Regression Problems—Visualize
Variable Relationships for the Abalone Problem
How to Use a Correlation Heat Map for Regression—
Visualize Pair-Wise Correlations for the Abalone Problem
Real-Valued Predictions Using Real-Valued Attributes:
Calculate How Your Wine Tastes
Multiclass Classification Problem: What Type of Glass Is That?
Using PySpark to Understand Large Data Sets
Summary

Predictive Model Building: Balancing Performance,

Complexity, and Big Data

The Basic Problem: Understanding Function Approximation
Working with Training Data
Assessing Performance of Predictive Models

Factors Driving Algorithm Choices and

Performance—Complexity and Data
Contrast between a Simple Problem and a Complex Problem
Contrast between a Simple Model and a Complex Model
Factors Driving Predictive Algorithm Performance
Choosing an Algorithm: Linear or Nonlinear?

Measuring the Performance of Predictive Models
Performance Measures for Different Types of Problems
Simulating Performance of Deployed Models

Achieving Harmony between Model and Data
Choosing a Model to Balance Problem Complexity, Model

Complexity, and Data Set Size
Using Forward Stepwise Regression to Control Overfitting
Evaluating and Understanding Your Predictive Model
Control Overfitting by Penalizing Regression
Coefficients—Ridge Regression
Using PySpark for Training Penalized Regression Models on
Extremely Large Data Sets
Summary

Penalized Linear Regression
Why Penalized Linear Regression Methods Are So Useful
Extremely Fast Coefficient Estimation
Variable Importance Information
Extremely Fast Evaluation When Deployed
Reliable Performance
Sparse Solutions

50

50

55

59

61

72
75

77
78
79
81

82
82

89
90
91
91
105
107

107
109
114

116

124
127

129
130
130
131
131
131
132

Contents

xvii

Problem May Require Linear Model
When to Use Ensemble Methods
Penalized Linear Regression: Regulating Linear Regression
for Optimum Performance
Training Linear Models: Minimizing Errors and More
Adding a Coefficient Penalty to the OLS Formulation
Other Useful Coefficient Penalties—Manhattan and
ElasticNet
Why Lasso Penalty Leads to Sparse Coefficient Vectors
ElasticNet Penalty Includes Both Lasso and Ridge
Solving the Penalized Linear Regression Problem
Understanding Least Angle Regression and Its
Relationship to Forward Stepwise Regression
How LARS Generates Hundreds of Models of Varying
Complexity
Choosing the Best Model from the Hundreds
LARS Generates
Using Glmnet: Very Fast and Very General
Comparison of the Mechanics of Glmnet and
LARS Algorithms
Initializing and Iterating the Glmnet Algorithm
Extension of Linear Regression to Classification Problems
Solving Classification Problems with Penalized Regression
Working with Classification Problems Having More
Than Two Outcomes
Understanding Basis Expansion: Using Linear
Methods on Nonlinear Problems
Incorporating Non-Numeric Attributes into Linear Methods
Summary

Chapter5 Building Predictive Models Using Penalized Linear Methods
Python Packages for Penalized Linear Regression
Multivariable Regression: Predicting Wine Taste

Building and Testing a Model to Predict Wine Taste
Training on the Whole Data Set before Deployment
Basis Expansion: Improving Performance by
Creating New Variables from Old Ones
Binary Classification: Using Penalized Linear
Regression to Detect Unexploded Mines
Build a Rocks Versus Mines Classifier for Deployment
Multiclass Classification: Classifying Crime Scene
Glass Samples
Linear Regression and Classification Using PySpark
Using PySpark to Predict Wine Taste
Logistic Regression with PySpark: Rocks Versus Mines
Incorporating Categorical Variables in a
PySpark Model: Predicting Abalone Rings

132
132

132
135
136

137
138
140
141

141

145

147
152

153
153
157
157

161

161
163
166

169
170
171
172
175

179

182
191

200
203
204
208

213

xviii Contents

Chapter 6

Chapter 7

Multiclass Logistic Regression with Meta
Parameter Optimization
Summary

Ensemble Methods
Binary Decision Trees
How a Binary Decision Tree Generates Predictions
How to Train a Binary Decision Tree
Tree Training Equals Split Point Selection
How Split Point Selection Affects Predictions
Algorithm for Selecting Split Points
Multivariable Tree Training—Which Attribute to Split?
Recursive Splitting for More Tree Depth
Overfitting Binary Trees
Measuring Overfit with Binary Trees
Balancing Binary Tree Complexity for Best Performance
Modifications for Classification and Categorical Features
Bootstrap Aggregation: “Bagging”
How Does the Bagging Algorithm Work?
Bagging Performance—Bias Versus Variance
How Bagging Behaves on Multivariable Problem
Bagging Needs Tree Depth for Performance
Summary of Bagging
Gradient Boosting
Basic Principle of Gradient Boosting Algorithm
Parameter Settings for Gradient Boosting
How Gradient Boosting Iterates toward a Predictive Model
Getting the Best Performance from Gradient Boosting
Gradient Boosting on a Multivariable Problem
Summary for Gradient Boosting
Random Forests
Random Forests: Bagging Plus Random Attribute Subsets
Random Forests Performance Drivers
Random Forests Summary
Summary

Building Ensemble Models with Python
Solving Regression Problems with Python Ensemble
Packages
Using Gradient Boosting to Predict Wine Taste
Using the Class Constructor for
GradientBoostingRegressor
Using GradientBoostingRegressor to Implement a
Regression Model
Assessing the Performance of a Gradient Boosting Model
Building a Random Forest Model to Predict Wine Taste
Constructing a RandomForestRegressor Object

217
219

221
222
224
225
227
228
229
229
230
231
231
232
235
235
236
239
241
245
246
246
246
249
249
250
253
256
256
259
260
261
262

265

265
266

266

268
271
272
273

Contents

XiX

Index

Modeling Wine Taste with RandomForestRegressor
Visualizing the Performance of a Random Forest
Regression Model
Incorporating Non-Numeric Attributes in Python
Ensemble Models
Coding the Sex of Abalone for Gradient Boosting
Regression in Python
Assessing Performance and the Importance of Coded
Variables with Gradient Boosting
Coding the Sex of Abalone for Input to Random Forest
Regression in Python
Assessing Performance and the Importance of
Coded Variables
Solving Binary Classification Problems with Python
Ensemble Methods
Detecting Unexploded Mines with Python
Gradient Boosting
Determining the Performance of a Gradient
Boosting Classifier
Detecting Unexploded Mines with Python Random Forest
Constructing a Random Forest Model to Detect
Unexploded Mines
Determining the Performance of a Random Forest Classifier
Solving Multiclass Classification Problems with
Python Ensemble Methods
Dealing with Class Imbalances
Classifying Glass Using Gradient Boosting
Determining the Performance of the Gradient Boosting
Model on Glass Classification
Classifying Glass with Random Forests
Determining the Performance of the Random Forest
Model on Glass Classification
Solving Regression Problems with PySpark Ensemble
Packages
Predicting Wine Taste with PySpark Ensemble Methods
Predicting Abalone Age with PySpark Ensemble Methods
Distinguishing Mines from Rocks with PySpark
Ensemble Methods
Identifying Glass Types with PySpark Ensemble Methods
Summary

275

279

279

280

282

284

287

288

288

291
292

294
298

300
301
301

306
307

310

311
312
317

321
325
327

329

Introduction

Extracting actionable information from data is changing the fabric of modern
business in ways that directly affect programmers. One way is the demand
for new programming skills. Market analysts predict demand for people with
advanced statistics and machine learning skills will exceed supply by 140,000
to 190,000 by 2018. That means good salaries and a wide choice of interesting
projects for those who have the requisite skills. Another development that affects
programmers is progress in developing core tools for statistics and machine
learning. This relieves programmers of the need to program intricate algorithms
for themselves each time they want to try a new one. Among general-purpose
programming languages, Python developers have been in the forefront, building
state-of-the-art machine learning tools, but there is a gap between having the
tools and being able to use them efficiently.

Programmers can gain general knowledge about machine learning in a
number of ways: online courses, a number of well-written books, and so on. Many
of these give excellent surveys of machine learning algorithms and examples of
their use, but because of the availability of so many different algorithmes, it’s
difficult to cover the details of their usage in a survey.

This leaves a gap for the practitioner. The number of algorithms available
requires making choices that a programmer new to machine learning might not
be equipped to make until trying several, and it leaves the programmer to fill
in the details of the usage of these algorithms in the context of overall problem
formulation and solution.

This book attempts to close that gap. The approach taken is to restrict the algo-
rithms covered to two families of algorithms that have proven to give optimum
performance for a wide variety of problems. This assertion is supported by
their dominant usage in machine learning competitions, their early inclusion in

xxi

Introduction

newly developed packages of machine learning tools, and their performance in
comparative studies (as discussed in Chapter 1, “The Two Essential Algorithms
for Making Predictions”). Restricting attention to two algorithm families makes
it possible to provide good coverage of the principles of operation and to run
through the details of a number of examples showing how these algorithms
apply to problems with different structures.

The book largely relies on code examples to illustrate the principles of oper-
ation for the algorithms discussed. I've discovered in the classes I have taught
at University of California, Berkeley, Galvanize, University of New Haven, and
Hacker Dojo, that programmers generally grasp principles more readily by
seeing simple code illustrations than by looking at math.

This book focuses on Python because it offers a good blend of functionality
and specialized packages containing machine learning algorithms. Python is an
often-used language that is well known for producing compact, readable code.
That fact has led a number of leading companies to adopt Python for prototyp-
ing and deployment. Python developers are supported by a large community
of fellow developers, development tools, extensions, and so forth. Python is
widely used in industrial applications and in scientific programming, as well.
It has a number of packages that support computationally intensive applica-
tions like machine learning, and it is a good collection of the leading machine
learning algorithms (so you don't have to code them yourself). Python is a better
general-purpose programming language than specialized statistical languages
such as R or SAS (Statistical Analysis System). Its collection of machine learning
algorithms incorporates a number of top-flight algorithms and continues to
expand.

Who This Book Is For

This book is intended for Python programmers who want to add machine
learning to their repertoire, either for a specific project or as part of keeping
their toolkit relevant. Perhaps a new problem has come up at work that requires
machine learning. With machine learning being covered so much in the news
these days, it’s a useful skill to claim on a resume.

This book provides the following for Python programmers:

m A description of the basic problems that machine learning attacks
m Several state-of-the-art algorithms
m The principles of operation for these algorithms

m Process steps for specifying, designing, and qualifying a machine learning
system

Introduction

xxiii

m Examples of the processes and algorithms
m Hackable code

To get through this book easily, your primary background requirements include
an understanding of programming or computer science and the ability to read
and write code. The code examples, libraries, and packages are all Python, so the
book will prove most useful to Python programmers. In some cases, the book
runs through code for the core of an algorithm to demonstrate the operating
principles, but then uses a Python package incorporating the algorithm to apply
the algorithm to problems. Seeing code often gives programmers an intuitive
grasp of an algorithm in the way that seeing the math does for others. Once
the understanding is in place, examples will use developed Python packages
with the bells and whistles that are important for efficient use (error checking,
handling input and output, developed data structures for the models, defined
predictor methods incorporating the trained model, and so on).

In addition to having a programming background, some knowledge of math
and statistics will help get you through the material easily. Math requirements
include some undergraduate-level differential calculus (knowing how to take a
derivative and a little bit of linear algebra), matrix notation, matrix multiplication,
and matrix inverse. The main use of these will be to follow the derivations of
some of the algorithms covered. Many times, that will be as simple as taking a
derivative of a simple function or doing some basic matrix manipulations. Being
able to follow the calculations at a conceptual level may aid your understanding
of the algorithm. Understanding the steps in the derivation can help you to under-
stand the strengths and weaknesses of an algorithm and can help you to decide
which algorithm is likely to be the best choice for a particular problem.

This book also uses some general probability and statistics. The requirements
for these include some familiarity with undergraduate-level probability and con-
cepts such as the mean value of a list of real numbers, variance, and correlation.
You can always look through the code if some of the concepts are rusty for you.

This book covers two broad classes of machine learning algorithms: penal-
ized linear regression (for example, Ridge and Lasso) and ensemble methods
(for example, Random Forest and Gradient Boosting). Each of these families
contains variants that will solve regression and classification problems. (You
learn the distinction between classification and regression early in the book.)

Readers who are already familiar with machine learning and are only inter-
ested in picking up one or the other of these can skip to the two chapters cov-
ering that family. Each method gets two chapters—one covering principles of
operation and the other running through usage on different types of problems.
Penalized linear regression is covered in Chapter 4, “Penalized Linear Regres-
sion,” and Chapter 5, “Building Predictive Models Using Penalized Linear

XXiv

Introduction

Methods.” Ensemble methods are covered in Chapter 6, “Ensemble Methods,”
and Chapter 7, “Building Ensemble Models with Python.” To familiarize yourself
with the problems addressed in the chapters on usage of the algorithms, you
might find it helpful to skim Chapter 2, “Understand the Problem by Under-
standing the Data,” which deals with data exploration. Readers who are just
starting out with machine learning and want to go through from start to finish
might want to save Chapter 2 until they start looking at the solutions to prob-
lems in later chapters.

What This Book Covers

As mentioned earlier, this book covers two algorithm families that are relatively
recent developments and that are still being actively researched. They both
depend on, and have somewhat eclipsed, earlier technologies.

Penalized linear regression represents a relatively recent development in
ongoing research to improve on ordinary least squares regression. Penalized
linear regression has several features that make it a top choice for predictive
analytics. Penalized linear regression introduces a tunable parameter that makes
it possible to balance the resulting model between overfitting and underfitting.
It also yields information on the relative importance of the various inputs to the
predictions it makes. Both of these features are vitally important to the proc-
ess of developing predictive models. In addition, penalized linear regression
yields the best prediction performance in some classes of problems, particularly
underdetermined problems and problems with very many input parameters
such as genetics and text mining. Furthermore, there’s been a great deal of recent
development of coordinate descent methods, making training penalized linear
regression models extremely fast.

To help you understand penalized linear regression, this book recapitulates
ordinary linear regression and other extensions to it, such as stepwise regres-
sion. The hope is that these will help cultivate intuition.

Ensemble methods are one of the most powerful predictive analytics tools
available. They can model extremely complicated behavior, especially for prob-
lems that are vastly overdetermined, as is often the case for many web-based
prediction problems (such as returning search results or predicting ad click-
through rates). Many seasoned data scientists use ensemble methods as their
first try because of their performance. They are relatively simple to use, and
they also rank variables in terms of predictive performance.

Ensemble methods have followed a development path parallel to penalized
linear regression. Whereas penalized linear regression evolved from over-
coming the limitations of ordinary regression, ensemble methods evolved to
overcome the limitations of binary decision trees. Correspondingly, this book’s

Introduction

coverage of ensemble methods covers some background on binary decision trees
because ensemble methods inherit some of their properties from binary decision
trees. Understanding them helps cultivate intuition about ensemble methods.

What Has Changed Since the First Edition

In the three years since the first edition was published, Python has more firmly
established itself as the primary language for data science. Developers of plat-
forms like Spark for big data or TensorFlow and Torch for deep learning have
adopted Python interfaces to reach the widest set of data scientists. The two
classes of algorithms emphasized in the first edition continue to be heavy favor-
ites and are now available as part of PySpark.

The beauty of this marriage is that the code required to build machine learning
models on truly gargantuan data sets is no more complicated than what’s required
on smaller data sets.

PySpark illustrates several important developments, making it cleaner and
easier to invoke very powerful machine learning tools through relatively simple
easy to read and write Python code. When the first edition of this book was
written, building machine learning models on very large data sets required
spinning up hundreds of processors, which required vast knowledge of data
center processes and programming. It was cumbersome and frankly not very
effective. Spark architecture was developed to correct this difficulty.

Spark made it possible to easily rent and employ large numbers of processors
for machine learning. PySpark added a Python interface. The result is that the
code to run a machine learning algorithm in PySpark is not much more compli-
cated than to run the plain Python versions of programs. The algorithms that
were the focus of the first edition continue to be heavily used favorites and are
available in Spark. So it seemed natural to add PySpark examples alongside the
Python examples in order to familiarize readers with PySpark.

In this edition all the code examples are in Python 3, since Python 2 is due to
fall out of support and, in addition to providing the code in text form, the code
is also available in Jupyter notebooks for each chapter. The notebook code when
executed will draw graphs and tables you see in the figures.

How This Book Is Structured

This book follows the basic order in which you would approach a new prediction
problem. The beginning involves developing an understanding of the data and
determining how to formulate the problem, and then proceeds to try an algorithm
and measure the performance. In the midst of this sequence, the book outlines

XXVi

Introduction

the methods and reasons for the steps as they come up. Chapter 1 gives a more
thorough description of the types of problems that this book covers and the
methods that are used. The book uses several data sets from the UC Irvine data
repository as examples, and Chapter 2 exhibits some of the methods and tools
that you can use for developing insight into a new data set. Chapter 3, “Predic-
tive Model Building: Balancing Performance, Complexity, and Big Data,” talks
about the difficulties of predictive analytics and techniques for addressing them.
It outlines the relationships between problem complexity, model complexity,
data set size, and predictive performance. It discusses overfitting and how to
reliably sense overfitting. It talks about performance metrics for different types
of problems. Chapters 4 and 5, respectively, cover the background on penalized
linear regression and its application to problems explored in Chapter 2. Chapters
6 and 7 cover background and application for ensemble methods.

What You Need to Use This Book

To run the code examples in the book, you need to have Python 3.x, SciPy,
numpy, pandas, and scikit-learn and PySpark. These can be difficult to install
due to cross-dependencies and version issues. To make the installation easy,
I've used a free distribution of these packages that’s available from Continuum
Analytics (http://continuum.io/). Its Anaconda product is a free download and
includes Python 3.x and all the packages you need to run the code in this book
(and more). I've run the examples on Ubuntu 14.04 Linux but haven't tried them
on other operating systems.

PySpark will need a Linux environment. If youre not running on Linux, then
probably the easiest way to run the examples will be to use a virtual machine.
Virtual Box is a free open source virtual machine—follow the directions to
download Virtual Box and then install Ubuntu 18.05 and use Anaconda to install
Python, PySpark, etc. You'll only need to employ a VM to run the PySpark exam-
ples. The non-Spark code will run anywhere you can open a Jupyter notebook.

Reader Support for This Book

Source code available in the book’s repository can help you speed your learning.
The chapters include installation instructions so that you can get coding along
with reading the book.

Source Code

As you work through the examples in this book, you may choose either to type
in all the code manually or to use the source code files that accompany the book.

Introduction

XXVii

All the source code used in this book is available for download from http://
www.wiley.com/go/pythonmachinelearning2e. You will find the code snippets
from the source code are accompanied by a download icon and note indicating
the name of the program so that you know it’s available for download and can
easily locate it in the download file.

Besides providing the code in text form, it is also included in a Python note-
book. If you know how to run a Jupyter notebook, you can run the code cell-
by-cell. The output will appear in the notebook, the figures will get drawn, and
printed output will appear below the code block.

After you download the code, just decompress it with your favorite com-
pression tool.

How to Contact the Publisher

If you believe you've found a mistake in this book, please bring it to our attention.
At John Wiley & Sons, we understand how important it is to provide our cus-
tomers with accurate content, but even with our best efforts an error may occur.

In order to submit your possible errata, please email it to our Customer Service
Team at wileysupportewiley.com with the subject line “Possible Book Errata
Submission”.

L

The Two Essential Algorithms for
Making Predictions

This book focuses on the machine learning process and so covers just a few of
the most effective and widely used algorithms. It does not provide a survey of
machine learning techniques. Too many of the algorithms that might be included
in a survey are not actively used by practitioners.

This book deals with one class of machine learning problems, generally
referred to as function approximation. Function approximation is a subset of
problems that are called supervised learning problems. Linear regression and its
classifier cousin, logistic regression, provide familiar examples of algorithms for
function approximation problems. Function approximation problems include
an enormous breadth of practical classification and regression problems in all
sorts of arenas, including text classification, search responses, ad placements,
spam filtering, predicting customer behavior, diagnostics, and so forth. The list
is almost endless.

Broadly speaking, this book covers two classes of algorithms for solving
function approximation problems: penalized linear regression methods and
ensemble methods. This chapter introduces you to both of these algorithms,
outlines some of their characteristics, and reviews the results of comparative
studies of algorithm performance in order to demonstrate their consistent high
performance.

This chapter then discusses the process of building predictive models. It
describes the kinds of problems that you'll be able to address with the tools
covered here and the flexibilities that you have in how you set up your problem

Machine Learning with Spark™ and Python®: Essential Techniques for Predictive Analytics, Second Edition.
Michael Bowles.
© 2020 John Wiley & Sons, Inc. Published 2020 by John Wiley & Sons, Inc.

Chapter 1 = The Two Essential Algorithms for Making Predictions

and define the features that you'll use for making predictions. It describes process
steps involved in building a predictive model and qualifying it for deployment.

Why Are These Two Algorithms So Useful?

Several factors make the penalized linear regression and ensemble methods a
useful collection. Stated simply, they will provide optimum or near-optimum
performance on the vast majority of predictive analytics (function approxima-
tion) problems encountered in practice, including big data sets, little data sets,
wide data sets, tall skinny data sets, complicated problems, and simple prob-
lems. Evidence for this assertion can be found in two papers by Rich Caruana
and his colleagues:

m “An Empirical Comparison of Supervised Learning Algorithms,” by Rich
Caruana and Alexandru Niculescu-Mizil'

m “An Empirical Evaluation of Supervised Learning in High Dimensions,”
by Rich Caruana, Nikos Karampatziakis, and Ainur Yessenalina?

In those two papers, the authors chose a variety of classification problems
and applied a variety of different algorithms to build predictive models. The
models were run on test data that were not included in training the models,
and then the algorithms included in the studies were ranked on the basis of
their performance on the problems. The first study compared 9 different basic
algorithms on 11 different machine learning (binary classification) problems.
The problems used in the study came from a wide variety of areas, including
demographic data, text processing, pattern recognition, physics, and biology.
Table 1.1 lists the data sets used in the study using the same names given by
the study authors. The table shows how many attributes were available for
predicting outcomes for each of the data sets, and it shows what percentage of
the examples were positive.

Table 1.1: Sketch of Problems in Machine Learning Comparison Study

% OF EXAMPLES THAT
DATA SET NAME NUMBER OF ATTRIBUTES ARE POSITIVE

Adult 14 25
Bact 1 69
Cod 15 50
Calhous 9 52
Cov_Type 54 36

HS 200 24

Chapter 1 = The Two Essential Algorithms for Making Predictions

% OF EXAMPLES THAT
DATA SET NAME NUMBER OF ATTRIBUTES ARE POSITIVE

Letter.p1 16 3

Letter.p2 16 53
Medis 63 n
Mg 124 17
Slac 59 50

The term positive example in a classification problem means an experiment (a
line of data from the input data set) in which the outcome is positive. For example,
if the classifier is being designed to determine whether a radar return signal
indicates the presence of an airplane, then the positive example would be those
returns where there was actually an airplane in the radar’s field of view. The
term positive comes from this sort of example where the two outcomes represent
presence or absence. Other examples include presence or absence of disease in
a medical test or presence or absence of cheating on a tax return.

Not all classification problems deal with presence or absence. For example,
determining the gender of an author by machine-reading his or her text or
machine-analyzing a handwriting sample has two classes—male and female—
but there’s no sense in which one is the absence of the other. In these cases,
there’s some arbitrariness in the assignment of the designations “positive” and
“negative.” The assignments of positive and negative can be arbitrary, but once
chosen must be used consistently.

Some of the problems in the first study had many more examples of one
class than the other. These are called unbalanced. For example, the two data sets
Letter.pl and Letter.p2 pose closely related problems in correctly classifying
typed uppercase letters in a wide variety of fonts. The task with Letter.pl is to
correctly classify the letter O in a standard mix of letters. The task with Letter
.p2 is to correctly classify A-M versus N-Z. The percentage of positives shown
in Table 1.1 reflects this difference.

Table 1.1 also shows the number of “attributes” in each of the data sets. Attrib-
utes are the variables you have available to base a prediction on. For example,
to predict whether or not an airplane will arrive at its destination on time,
you might incorporate attributes such as the name of the airline company,
the make and year of the airplane, the level of precipitation at the destination
airport, the wind speed and direction along the flight path, and so on. Hav-
ing a lot of attributes upon which to base a prediction can be a blessing and a
curse. Attributes that relate directly to the outcomes being predicted are a
blessing. Attributes that are unrelated to the outcomes are a curse. Telling the
difference between blessed and cursed attributes requires data. Chapter 3, “Pre-
dictive Model Building: Balancing Performance, Complexity, and Big Data,”
goes into that in more detail.

Chapter 1 = The Two Essential Algorithms for Making Predictions

Table 1.2 shows how the algorithms covered in this book fared relative to the
other algorithms used in the study. Table 1.2 shows which algorithms showed
the top five performance scores for each of the problems listed in Table 1.1. Algo-
rithms covered in this book are spelled out (boosted decision trees, Random
Forests, bagged decision trees, and logistic regression). The first three of these
are ensemble methods. Penalized regression was not fully developed when the
study was done and wasn't evaluated. Logistic regression is a close relative and
is used to gauge the success of regression methods. Each of the 9 algorithms
used in the study had 3 different data reduction techniques applied, for a total of
27 combinations. The top five positions represent roughly the top 20 percent of
performance scores. The row next to the heading Covt indicates that the boosted
decision trees algorithm was the first and second best relative to performance,
the Random Forests algorithm was the fourth and fifth best, and the bagged
decision trees algorithm was the third best. In the cases where algorithms not
covered here were in the top five, an entry appears in the Other column. The
algorithms that show up there are k-nearest neighbors (KNNs), artificial neural nets
(ANNS), and support vector machines (SVMs).

Table 1.2: How the Algorithms Covered in This Book Compare on Different Problems

BOOSTED BAGGED

DECISION RANDOM DECISION LOGISTIC
ALGORITHM TREES FORESTS TREES REGRESSION OTHER
Covt 1,2 4,5 3
Adult 1,4 2 3,5
LTR.P1 1 SVM, KNN
LTR.P2 1,2 4,5 SVM
MEDIS 1,3 5 ANN
SLAC 1,23 4,5
HS 1,3 ANN
MG 2,4,5 1,3
CALHOUS 1,2 5 3,4
CcoD 1,2 3,4,5
BACT 2,5 1,3,4

Logistic regression captures top-five honors in only one case in Table 1.2. The
reason for that is that these data sets have few attributes (at most 200) relative to
examples (5,000 in each data set). There’s plenty of data to resolve a model with

Chapter 1 = The Two Essential Algorithms for Making Predictions

so few attributes, and yet the training sets are small enough that the training
time is not excessive.

Asyou'll see in Chapter 3 and in the examples covered in Chapter 5, “Building
Predictive Models Using Penalized Linear Methods,” and Chapter 7, “Build-
ing Ensemble Models with Python,” the penalized regression methods perform
best relative to other algorithms when there are numerous attributes and not
enough examples or time to train a more complicated ensemble model.

Caruana et al. have run a newer study (2008) to address how these algorithms
compare when the number of attributes increases. That is, how do these algo-
rithms compare on big data? A number of fields have significantly more attrib-
utes than the data sets in the first study. For example, genomic problems have
several tens of thousands of attributes (one attribute per gene), and text mining
problems can have millions of attributes (one attribute per distinct word or per
distinct pair of words). Table 1.3 shows how linear regression and ensemble
methods fare as the number of attributes grows. The results in Table 1.3 show
the ranking of the algorithms used in the second study. The table shows the
performance on each of the problems individually and in the far right column
shows the ranking of each algorithm’s average score across all the problems.
The algorithms used in the study are broken into two groups. The top group
of algorithms are ones that will be covered in this book. The bottom group will
not be covered.

The problems shown in Table 1.3 are arranged in order of their number of
attributes, ranging from 761 to 685,569. Linear (logistic) regression is in the top
three for 5 of the 11 test cases used in the study. Those superior scores were
concentrated among the larger data sets. Notice that boosted decision tree
(denoted by BSTDT in Table 1.3) and Random Forests (denoted by RF in Table 1.3)
algorithms still perform near the top. They come in first and second for overall
score on these problems.

The algorithms covered in this book have other advantages besides raw pre-
dictive performance. An important benefit of the penalized linear regression
models that the book covers is the speed at which they train. On big problems,
training speed can become an issue. In some problems, model training can take
days or weeks. This time frame can be an intolerable delay, particularly early
in development when iterations are required to home in on the best approach.
Besides training very quickly, after being deployed a trained linear model can
produce predictions very quickly—quickly enough for high-speed trading or
Internet ad insertions. The study demonstrates that penalized linear regression
can provide the best answers available in many cases and be near the top even
in cases where they are not the best.

Table 1.3: How the Algorithms Covered in This Book Compare on Big Data Problems

761 761 780 927 1344 3448 20958 105354 195203 405333 685569

DIM STURN CALAM DIGITS TIS CRYST KDD98 R-S CITE DSE SPAM IMDB MEAN
BSTDT 8 1 2] 1 3 8 1 7 1] 3 1
RF 9 4 3 3 2 1 6 5 3 1 3 2
BAGDT 5 2 6 4 3 1 9 1 6 7 3 4
BSTST 2 3 7 7 7 1 7 4 8 8 5 7
LR 4 8 9 1 4 1 2 2 2 4 4 6
sSVm 3 5 5 2 5 2 1 1 5 5 3 3
ANN 6 7 4 5 8 1 4 2 1 3 3 5
KNN 1 6 1 9 6 2 10 1 7 9 6 8
PRC 7 9 8 8 7 1 3 3 4 2 2 9
NB 10 10 10 10 9 1 5 1 9 10 7 10

Chapter 1 = The Two Essential Algorithms for Making Predictions

In addition, these algorithms are reasonably easy to use. They do not have
very many tunable parameters. They have well-defined and well-structured
input types. They solve several types of problems in regression and classification.
It is not unusual to be able to arrange the input data and generate a first
trained model and performance predictions within an hour or two of starting a
new problem.

One of their most important features is that they indicate which of their input
variables is most important for producing predictions. This turns out to be
an invaluable feature in a machine learning algorithm. One of the most time-
consuming steps in the development of a predictive model is what is sometimes
called feature selection or feature engineering. This is the process whereby the data
scientist chooses the variables that will be used to predict outcomes. By rank-
ing features according to importance, the algorithms covered in this book aid
in the feature-engineering process by taking some of the guesswork out of the
development process and making the process more sure.

What Are Penalized Regression Methods?

Penalized linear regression is a derivative of ordinary least squares (OLS) regres-
sion—a method developed by Gauss and Legendre roughly 200 years ago.
Penalized linear regression methods were designed to overcome some basic
limitations of OLS regression. The basic problem with OLS is that sometimes it
overfits the problem. Think of OLS as fitting a line through a group of points,
as in Figure 1.1. This is a simple prediction problem: predicting y, the target
value given a single attribute x. For example, the problem might be to predict
men’s salaries using only their heights. Height is slightly predictive of salaries
for men (but not for women).

y —target value

x — attribute value
Figure 1.1: Ordinary least squares fit

Chapter 1 = The Two Essential Algorithms for Making Predictions

The points represent men’s salaries versus their heights. The line in Figure 1.1
represents the OLS solution to this prediction problem. In some sense, the line
is the best predictive model for men’s salaries given their heights. The data set
has six points in it. Suppose that the data set had only two points in it. Imagine
that there’s a population of points, like the ones in Figure 1.1, but that you do
not get to see all the points. Maybe they are too expensive to generate, like the
genetic data mentioned earlier. There are enough humans available to isolate
the gene that is the culprit; the problem is that you do not have gene sequences
for many of them because of cost.

To simulate this in the simple example, imagine that instead of six points you're
given only two of the six points. How would that change the nature of the line
fit to those points? It would depend on which two points you happened to get.
To see how much effect that would have, pick any two points from Figure 1.1
and imagine a line through them. Figure 1.2 shows some of the possible lines
through pairs of points from Figure 1.1. Notice how much the lines vary depend-
ing on the choice of points.

y —target value

x — attribute value
Figure 1.2: Fitting lines with only two points

The problem with having only two points to fit a line is that there is not enough
data for the number of degrees of freedom. A line has two degrees of freedom.
Having two degrees of freedom means that there are two independent param-
eters that uniquely determine a line. You can imagine grabbing hold of a line
in the plane and sliding it up and down in the plane or twisting it to change
its slope. So, vertical position and slope are independent. They can be changed
separately, and together they completely specify a line. The degrees of freedom
of a line can be expressed in several equivalent ways (where it intercepts the
y-axis and its slope, two points that are on the line, and so on). All of these rep-
resentations of a line require two parameters to specify.

When the number of degrees of freedom is equal to the number of points, the
predictions are not very good. The lines hit the points used to draw them, but
there is a lot of variation among lines drawn with different pairs of points. You

Chapter 1 = The Two Essential Algorithms for Making Predictions

cannot place much faith in a prediction that has as many degrees of freedom
as the number of points in your data set. The plot in Figure 1.1 had six points
and fit a line (two degrees of freedom) through them. That is six points and two
degrees of freedom. The thought problem of determining the genes causing a
heritable condition illustrated that having more genes to choose from makes it
necessary to have more data in order to isolate a cause from among the 20,000
or so possible human genes. The 20,000 different genes represent 20,000 degrees
of freedom. Data from even 20,000 different persons will not suffice to get a
reliable answer, and in many cases, all that can be afforded within the scope of
a reasonable study is a sample from 500 or so persons. That is where penalized
linear regression may be the best algorithm choice.

Penalized linear regression provides a way to systematically reduce degrees of
freedom to match the amount of data available and the complexity of the under-
lying phenomena. These methods have become very popular for problems with
very many degrees of freedom. They are a favorite for genetic problems where
the number of degrees of freedom (that is, the number of genes) can be several
tens of thousands and for problems like text classification where the number of
degrees of freedom can be more than a million. Chapter 4, “Penalized Linear
Regression,” gives more detail on how these methods work, sample code that
illustrates the mechanics of these algorithms, and examples of the process for
implementing machine learning systems using available Python packages.

What Are Ensemble Methods?

The other family of algorithms covered in this book is ensemble methods. The
basic idea with ensemble methods is to build a horde of different predictive
models and then combine their outputs—by averaging the outputs or taking the
majority answer (voting). The individual models are called base learners. Some
results from computational learning theory show that if the base learners are
just slightly better than random guessing, the performance of the ensemble can
be very good if there is a sufficient number of independent models.

One of the problems spurring the development of ensemble methods has
been the observation that some particular machine learning algorithms exhibit
instability. For example, the addition of fresh data to the data set might result in
aradical change in the resulting model or its performance. Binary decision trees
and traditional neural nets exhibit this sort of instability. This instability causes
high variance in the performance of models, and averaging many models can
be viewed as a way to reduce the variance. The trick is how to generate large
numbers of independent models, particularly if they are all using the same base
learner. Chapter 6, “Ensemble Methods,” will get into the details of how this is
done. The techniques are ingenious, and it is relatively easy to understand their
basic principles of operation. Here is a preview of what'’s in store.

